
Challenges of Operationalizing Data Science in
Production

Machine Learning Operations Meet-Up #1
July 4

Real-world Data Science Challenges

• Section 1: Business Aspects

• Section 2: Technology and Operational Aspects

• Demo

Agenda

3

Santanu Dey is a Solutions Architect helping

customers with their Digital Transformations

journey, solutions involving Cloud, Analytics,

Microservices etc.

Over 18 years of proven track record of

designing and operationalizing high-volume,

mission critical, distributed systems.

Speakers

@Santanu_Dey

santanud@iguazio.com

Santanu Dey

Rasmi's primary background is in product and

technology management. His secondary

background covers business transformation

and operations functions across enterprise

and startup environment. He currently is a

Product Owner at Experian's APAC innovation

Hub - XLabs.

https://www.linkedin.com/in/ras

mi-m-428b3a46/

Rasmi Mohapatra

Section 1: Business Aspects

5

What is Data Science?

1. Domain Knowledge!

2. Actually understanding math!

3. Visualisation!

Business Issue #0
Don’t stop until you find your data scientist!

Business Issue #1
Giving into hype - Underestimating “small” data

Business Issue #2
Being unaware of regulation, compliance

Business Issue #3
Can’t explain it right to right people? You probably losing your hard work!!!

Business Issue #4
Accessing clean data

0- Focus on your domain and business requirements

1- Business cares about outcomes – not Big Data or Small

2– Be aware of regulatory implications of Data

3– Focus on Explain-ability & “Good enough” accuracy

4– Making the dataset usable for Data Science

Business Challenges Summery

Section 2: Technology Aspects

Data Science Journey

Sample data set
at rest

Data Scientist

Workstation

Models

What does it take to Productionize AI Apps

Data Science Team

Large Data Sets

?
Productionize Smart

Applications

Where are the key challenges?

Landmines!

Large Data Sets

Store &
access
large

training
data sets

access
fresh &

historical
data

Cleanse
and

prepare
large data

sets

support
for tools of

choice

distributed
training

including
GPUs

Track
models

and data
Make

models
portable

Serve
models at

scale

retrain
and

deploy
models

via CI/CD

multi-
tenancy

on a
shared
cluster

Data Engineer Data Scientist ML-Ops

Infra &
SLA aspects

Platform &
Tooling

Productionize Smart
Applications

Data Science Lifecycle

Load data
Pre-

processing
Training a

model
Deployment

Ongoing
monitoring

DS Lifecycle & IT Implications

Load data
Pre-

processing
Training a

model
Deployment

Ongoing
monitoring

SLA Driven
• Latency
• Automation
• Monitoring
• Accuracy

Compute Driven
• CPU
• GPU
• Multi-node
• Scheduling / Sharing
• Elasticity

I/O Intensive
• High Volume
• Legacy Touchpoints
• Often long wait
• Multiple silos

DS Lifecycle & IT Implications

Load data
Pre-

processing
Training a

model
Deployment

Ongoing
monitoring

SLA Driven
• Latency
• Automation
• Monitoring
• Accuracy

Compute Driven
• CPU
• GPU
• Multi-node
• Scheduling / Sharing
• Elasticity

I/O Intensive
• High Volume
• Legacy Touchpoints
• Often long wait
• Multiple silos

Customer

Driven

Data Science Lifecycle & Multiple Roles

Load data
Pre-

processing
Training a

model
Deployment

Ongoing
monitoring

Data Engineer Data Scientist ML-Ops

Friction Across Data Science Lifecycle & Roles

Load data
Pre-

processing
Training a

model
Deployment

Ongoing
monitoring

Data Engineer Data Scientist ML-Ops

✓ Get fresh and relevant

data from actual

system

✗ Dependency on IT for
data access and data

prep

✗ Old data, unclean,
wrong granularity

✓ Self-service data prep

by Data Scientist

✗ Am I forced to use

specific services /
tools?

✗ data prep code not

scaling for large
dataset

✓ Support Jupytar and

ALL my DS tools

✗ Rewrite the training

code to scale the
training

✗ Experiments are not

repeatable

✗ IT blocks my tools

✓ Portable model

artifact

✗ Too much CI/CD work

✗ Data input is different
for inference phase

✗ Difficult to

version/track/rollback

models

✓ scale and recover

elastically

✗ Security / Scalability/

Monitoring of
deployed models

✗ No feedback loop

DIY Approach

DIY Approach

Load data
Pre-

processing
Training a

model
Deploymen

t
Ongoing

monitoring

AWS S3

AWS Kinesis

AWS
Lambda

AWS
DynamoDB

AWS EMR

AWS
Batch

Load data
Pre-

processing
Training a

model
Deploymen

t
Ongoing

monitoring

AWS S3

AWS Kinesis

AWS
Lambda

AWS
DynamoDB

AWS EMR AWS S3

AWS SageMaker
Notebooks

ML Training
Cluster

AWS SageMaker
Models

AWS
Batch

DIY Approach

Load data
Pre-

processing
Training a

model
Deploymen

t
Ongoing

monitoring

AWS S3

AWS Kinesis

AWS
Lambda

AWS
DynamoDB

AWS EMR AWS S3

AWS SageMaker
Notebooks

ML Training
Cluster

AWS SageMaker
Models

AWS
Batch

AWS
Lambda

AWS SageMaker
Endpoint

AWS ECR

AWS
CodeCommit

AWS
CodePipeline

AWS
CodeBuild

DIY Approach

Load data
Pre-

processing
Training a

model
Deploymen

t
Ongoing

monitoring

AWS S3

AWS Kinesis

AWS
Lambda

AWS
DynamoDB

AWS EMR AWS S3

AWS SageMaker
Notebooks

ML Training
Cluster

AWS SageMaker
Models

AWS
Batch

AWS
Lambda

AWS SageMaker
Endpoint

AWS ECR

AWS
CodeCommit

AWS
CodePipeline

AWS
CodeBuild

Data Engineer Data Scientist ML-Ops

DIY Approach

Building
your own
platform

Automation

Availability, Scalability, Cost

DIY Approach

Technical
Concerns

Automation

Availability, Scalability, Cost

Business
Focus

Data
Wrangling

for Patterns

Feature
Identification

Build, Train,
Test Model

Refining
Algorithm

Model
Parameter

Tuning

Self-Service

DIY Approach

Data
Ingestion

Technical
Concerns

Automation

Availability, Scalability, Cost

Business
Focus

Data
Wrangling

for Patterns

Feature
Identification

Build, Train,
Test Model

Refining
Algorithm

Model
Parameter

Tuning

Self-Service

DIY Approach

Data
Ingestion

Focos on the
business

challenges as

outlined in section 1

Platform Approach

Platform Approach

Data Science Platform Services

Platform Approach

Data Science Platform Services

Data
Wrangling

for Patterns

Feature
Identification

Build, Train,
Test Model

Refining
Algorithm

Model
Parameter

Tuning

Data
Ingestion

Platform Approach

Data Science Platform Services

Resource Sharing

Data
Wrangling

for Patterns

Feature
Identification

Build, Train,
Test Model

Refining
Algorithm

Model
Parameter

Tuning

Self-Service

Data
Ingestion

Platform Approach

Data Science Platform Services

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Data
Wrangling

for Patterns

Feature
Identification

Build, Train,
Test Model

Refining
Algorithm

Model
Parameter

Tuning

Self-Service

Data
Ingestion

Business
Focus

A platform
should hide the

technical
concerns

Cloud or Hybrid or On-Prem

Demo

Summary

41

Code/Model Development Is Just The FIRST Step

Develop/Experiment Package Scale-out Tune Instrument Automate

• Dependencies

• Parameters

• Run scripts
• Build

• Load-balance

• Data partitions

• Model distribution
• Hyper params

• Parallelism

• GPU support

• Query tuning
• Caching

• Monitoring

• Logging

• Versioning
• Security

• CI/CD

• Workflows

• Rolling upgrades
• A/B testing

Weeks with one

data scientist

Months with a large team of developers,

scientists, data engineers and DevOps

Every piece of code, data science algorithm, or data processing task must be built for production

Nuclio: Fast Serverless for Data Science & RT Analytics

magic commands from

notebook to function

Extending ML Pipelines from batch:

1. Parallel processing

2. Code build/deployment

3. Stream processing

4. API/Model Serving

High-performance IO and Computation
+ GPU Optimizations Code + DevOps Automation:

1. Auto-scaling (to zero)

2. Automated logging & monitoring

3. Security hardening

4. Auto-build and CI/CD

5. Workload mobility (cloud/edge/..)

42

Platform Approach - Summary

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Self-Service

Cloud or Hybrid or On-Prem

PandasDaskTensorFlow PyTorch Spark Presto GrafanaPrometheusRapidsServerless

KubeFlow

Time SeriesStream TableObject

Jupyter Notebook

Platform Approach - Summary

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Self-Service

Cloud or Hybrid or On-Prem

PandasDaskTensorFlow PyTorch Spark Presto GrafanaPrometheusRapidsServerless

KubeFlow

Time SeriesStream TableObject

Jupyter Notebook

No new skills to
learn – use most all

common ML tools

e.g. Jupy, Kubeflow

Platform Approach - Summary

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Self-Service

Cloud or Hybrid or On-Prem

PandasDaskTensorFlow PyTorch Spark Presto GrafanaPrometheusRapidsServerless

KubeFlow

Time SeriesStream TableObject

Jupyter Notebook

Natively available
data services for

high IOPS ML

workloads

Platform Approach - Summary

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Self-Service

Cloud or Hybrid or On-Prem

PandasDaskTensorFlow PyTorch Spark Presto GrafanaPrometheusRapidsServerless

KubeFlow

Time SeriesStream TableObject

Jupyter Notebook

Ability to support
CPU as well GPU

for training as well

as inferencing

Platform Approach - Summary

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Self-Service

Cloud or Hybrid or On-Prem

PandasDaskTensorFlow PyTorch Spark Presto GrafanaPrometheusRapidsServerless

KubeFlow

Time SeriesStream TableObject

Jupyter Notebook

scaling, monitoring
and sharing of

platform resources

using K8S

Q&A

santanud@iguazio.com

▪ ML Pipelines for Production: KubeFlow

▪ Why use GPUs to Accelerate ML Projects

▪ How Serverless Simplifies ML Model Development & Deployment

Upcoming Meet-up Sessions

Thanks

