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• Demo
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customers with their Digital Transformations 
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Section 1: Business Aspects
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What is Data Science?





1. Domain Knowledge!



2. Actually understanding math!



3. Visualisation! 



Business Issue #0
Don’t stop until you find your data scientist!



Business Issue #1
Giving into hype - Underestimating “small” data



Business Issue #2
Being unaware of regulation, compliance



Business Issue #3
Can’t explain it right to right people? You probably losing your hard work!!!



Business Issue #4
Accessing clean data 



# 0- Focus on your domain and business requirements 

# 1- Business cares about outcomes – not Big Data or Small 

# 2– Be aware of regulatory implications of Data 

# 3– Focus on Explain-ability & “Good enough” accuracy 

# 4– Making the dataset usable for Data Science 

Business Challenges Summery



Section 2: Technology Aspects



Data Science Journey

Sample data set 
at rest

Data Scientist

Workstation

Models



What does it take to Productionize AI Apps

Data Science Team

Large Data Sets

?
Productionize Smart 

Applications



Where are the key challenges?



Landmines! 

Large Data Sets

Store & 
access 
large 

training 
data sets

access 
fresh & 

historical 
data

Cleanse 
and 

prepare 
large data 

sets

support 
for tools of 

choice

distributed 
training 

including 
GPUs

Track 
models 

and data
Make 

models 
portable 

Serve 
models at 

scale

retrain 
and 

deploy 
models 

via CI/CD

multi-
tenancy 

on a 
shared 
cluster

Data Engineer Data Scientist ML-Ops

Infra &
SLA aspects

Platform & 
Tooling

Productionize Smart 
Applications



Data Science Lifecycle

Load data
Pre-

processing
Training a 

model
Deployment

Ongoing 
monitoring



DS Lifecycle & IT Implications
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• Multiple silos
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Data Science Lifecycle & Multiple Roles

Load data
Pre-

processing
Training a 

model
Deployment

Ongoing 
monitoring

Data Engineer Data Scientist ML-Ops



Friction Across Data Science Lifecycle & Roles

Load data
Pre-

processing
Training a 

model
Deployment

Ongoing 
monitoring

Data Engineer Data Scientist ML-Ops

✓ Get fresh and relevant 

data from actual 

system

✗ Dependency on IT for 
data access and data 

prep

✗ Old data, unclean, 
wrong granularity

✓ Self-service data prep 

by Data Scientist 

✗ Am I forced to use 

specific services / 
tools?

✗ data prep code not 

scaling for large 
dataset

✓ Support Jupytar and 

ALL my DS tools 

✗ Rewrite the training 

code to scale the 
training

✗ Experiments are not 

repeatable 

✗ IT blocks my tools

✓ Portable model 

artifact

✗ Too much CI/CD work

✗ Data input is different 
for inference phase

✗ Difficult to 

version/track/rollback 

models

✓ scale and recover 

elastically

✗ Security / Scalability/ 

Monitoring of 
deployed models

✗ No feedback loop



DIY Approach
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Building 
your own 
platform

Automation

Availability, Scalability, Cost

DIY Approach



Technical 
Concerns

Automation

Availability, Scalability, Cost

Business 
Focus
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Technical 
Concerns

Automation

Availability, Scalability, Cost

Business 
Focus

Data 
Wrangling 

for Patterns

Feature 
Identification

Build, Train, 
Test Model

Refining 
Algorithm

Model 
Parameter 

Tuning

Self-Service

DIY Approach

Data 
Ingestion

Focos on the 
business 

challenges as 

outlined in section 1



Platform Approach



Platform Approach

Data Science Platform Services



Platform Approach

Data Science Platform Services

Data 
Wrangling 

for Patterns

Feature 
Identification

Build, Train, 
Test Model

Refining 
Algorithm

Model 
Parameter 

Tuning

Data 
Ingestion



Platform Approach

Data Science Platform Services

Resource Sharing

Data 
Wrangling 

for Patterns

Feature 
Identification

Build, Train, 
Test Model

Refining 
Algorithm

Model 
Parameter 

Tuning

Self-Service

Data 
Ingestion



Platform Approach

Data Science Platform Services

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Data 
Wrangling 

for Patterns

Feature 
Identification

Build, Train, 
Test Model

Refining 
Algorithm

Model 
Parameter 

Tuning

Self-Service

Data 
Ingestion

Business 
Focus

A platform 
should hide the 

technical 
concerns

Cloud or Hybrid or On-Prem 



Demo



Summary
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Code/Model Development Is Just The FIRST Step

Develop/Experiment Package Scale-out Tune Instrument Automate

• Dependencies

• Parameters

• Run scripts
• Build

• Load-balance

• Data partitions

• Model distribution
• Hyper params

• Parallelism

• GPU support

• Query tuning
• Caching  

• Monitoring

• Logging

• Versioning
• Security

• CI/CD

• Workflows

• Rolling upgrades
• A/B testing

Weeks with one 

data scientist

Months with a large team of developers, 

scientists, data engineers and DevOps

Every piece of code, data science algorithm, or data processing task must be built for production



Nuclio: Fast Serverless for Data Science & RT Analytics

magic commands from 

notebook to function

Extending ML Pipelines from batch:

1. Parallel processing

2. Code build/deployment

3. Stream processing

4. API/Model Serving

High-performance IO and Computation
+ GPU Optimizations Code + DevOps Automation:

1. Auto-scaling (to zero)

2. Automated logging & monitoring

3. Security hardening 

4. Auto-build and CI/CD

5. Workload mobility (cloud/edge/..)

42



Platform Approach - Summary

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Self-Service

Cloud or Hybrid or On-Prem 

PandasDaskTensorFlow PyTorch Spark Presto GrafanaPrometheusRapidsServerless

KubeFlow

Time SeriesStream TableObject

Jupyter Notebook
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Platform Approach - Summary

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Self-Service

Cloud or Hybrid or On-Prem 

PandasDaskTensorFlow PyTorch Spark Presto GrafanaPrometheusRapidsServerless

KubeFlow

Time SeriesStream TableObject

Jupyter Notebook

Ability to support 
CPU as well GPU 

for training as well 

as inferencing



Platform Approach - Summary

Resource Sharing

Multi-Model Persistence CacheLong-Term Commodity Storage

Self-Service

Cloud or Hybrid or On-Prem 

PandasDaskTensorFlow PyTorch Spark Presto GrafanaPrometheusRapidsServerless

KubeFlow

Time SeriesStream TableObject

Jupyter Notebook

scaling, monitoring 
and sharing of 

platform resources 

using K8S



Q&A

santanud@iguazio.com



▪ ML Pipelines for Production: KubeFlow

▪ Why use GPUs to Accelerate ML Projects

▪ How Serverless Simplifies ML Model Development & Deployment

Upcoming Meet-up Sessions



Thanks


